Supervised and Semi-Supervised Multi-View Canonical Correlation Analysis Ensemble for Heterogeneous Domain Adaptation in Remote Sensing Image Classification
نویسندگان
چکیده
In this paper, we present the supervised multi-view canonical correlation analysis ensemble (SMVCCAE) and its semi-supervised version (SSMVCCAE), which are novel techniques designed to address heterogeneous domain adaptation problems, i.e., situations in which the data to be processed and recognized are collected from different heterogeneous domains. Specifically, the multi-view canonical correlation analysis scheme is utilized to extract multiple correlation subspaces that are useful for joint representations for data association across domains. This scheme makes homogeneous domain adaption algorithms suitable for heterogeneous domain adaptation problems. Additionally, inspired by fusion methods such as Ensemble Learning (EL), this work proposes a weighted voting scheme based on canonical correlation coefficients to combine classification results in multiple correlation subspaces. Finally, the semi-supervised MVCCAE extends the original procedure by incorporating multiple speed-up spectral regression kernel discriminant analysis (SRKDA). To validate the performances of the proposed supervised procedure, a single-view canonical analysis (SVCCA) with the same base classifier (Random Forests) is used. Similarly, to evaluate the performance of the semi-supervised approach, a comparison is made with other techniques such as Logistic label propagation (LLP) and the Laplacian support vector machine (LapSVM). All of the approaches are tested on two real hyperspectral images, which are considered the target domain, with a classifier trained from synthetic low-dimensional multispectral images, which are considered the original source domain. The experimental results confirm that multi-view canonical correlation can overcome the limitations of SVCCA. Both of the proposed procedures outperform the ones used in the comparison with respect to not only the classification accuracy but also the computational efficiency. Moreover, this research shows that canonical correlation weighted voting (CCWV) is a valid option with respect to other ensemble schemes and that because of their ability to balance diversity and accuracy, Remote Sens. 2017, 9, 337 2 of 28 canonical views extracted using partially joint random view generation are more effective than those obtained by exploiting disjoint random view generation.
منابع مشابه
Application of remote sensing and geographical information system in mapping land cover of the national park
The study was conducted with the objective of mapping landscape cover of Nechsar National park in Ethiopia to produce spatially accurate and timely information on land use and changing pattern. Monitoring provides the planners and decision-makers with required information about the current state of its development and the nature of changes that have occurred. Remote sensing and Geographical Inf...
متن کاملDetermination of Best Supervised Classification Algorithm for Land Use Maps using Satellite Images (Case Study: Baft, Kerman Province, Iran)
According to the fundamental goal of remote sensing technology, the image classification of desired sensors can be introduced as the most important part of satellite image interpretation. There exist various algorithms in relation to the supervised land use classification that the most pertinent one should be determined. Therefore, this study has been conducted to determine the best and most su...
متن کاملEvaluation of Land Cover Changes Ysing Remote Sensing Technique (Case study: Hableh Rood Subwatershed of Shahrabad Basin)
The growing population and increasing socio-economic necessities creates a pressure on land use/land cover. Nowadays, land use change detection using remote sensing data provides quantitative and timely information for management and evaluation of natural resources. This study investigates the land use changes in part of Hableh Rood Watershed of Iran using Landsat 7 and 8 (Sensor ETM+ and OLI) ...
متن کاملThe Possibility of Created the Vegetation Cover Maps in the Central Zagros Forest by Using the IRS Satellite Image
The preparation of vegetation cover maps by used the land inventory and a traditional method has a lot of cost and time. But today, remote sensing is one of the main sources of data collection and information production for study and monitoring land resources, and was efficient tools for providing quickly and timely data and information needs for program planning in the natural resource filed. ...
متن کاملThe Possibility of Created the Vegetation Cover Maps in the Central Zagros Forest by Using the IRS Satellite Image
The preparation of vegetation cover maps by used the land inventory and a traditional method has a lot of cost and time. But today, remote sensing is one of the main sources of data collection and information production for study and monitoring land resources, and was efficient tools for providing quickly and timely data and information needs for program planning in the natural resource filed. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Remote Sensing
دوره 9 شماره
صفحات -
تاریخ انتشار 2017